Show simple item record

dc.contributor.authorGaudet, Brian
dc.contributor.authorLinares, Richard
dc.contributor.authorFurfaro, Roberto
dc.date.accessioned2022-03-21T14:56:14Z
dc.date.available2021-10-27T20:23:28Z
dc.date.available2022-03-21T14:56:14Z
dc.date.issued2020-04
dc.date.submitted2019-11
dc.identifier.issn0094-5765
dc.identifier.urihttps://hdl.handle.net/1721.1/135440.2
dc.description.abstract© 2020 IAA This paper proposes a novel adaptive guidance system developed using reinforcement meta-learning with a recurrent policy and value function approximator. The use of recurrent network layers allows the deployed policy to adapt in real time to environmental forces acting on the agent. We compare the performance of the DR/DV guidance law, an RL agent with a non-recurrent policy, and an RL agent with a recurrent policy in four challenging environments with unknown but highly variable dynamics. These tasks include a safe Mars landing with random engine failure and a landing on an asteroid with unknown environmental dynamics. We also demonstrate the ability of a RL meta-learning optimized policy to implement a guidance law using observations consisting of only Doppler radar altimeter readings in a Mars landing environment, and LIDAR altimeter readings in an asteroid landing environment thus integrating guidance and navigation.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.actaastro.2020.01.007en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleAdaptive guidance and integrated navigation with reinforcement meta-learningen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.relation.journalActa Astronauticaen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-05-06T13:40:28Z
dspace.orderedauthorsGaudet, B; Linares, R; Furfaro, Ren_US
dspace.date.submission2021-05-06T13:40:29Z
mit.journal.volume169en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version