MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real‐Time Thermospheric Density Estimation via Two‐Line Element Data Assimilation

Author(s)
Gondelach, David J; Linares, Richard
Thumbnail
DownloadPublished version (4.469Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Inaccurate estimates of the thermospheric density are a major source of error in low Earth orbit prediction. In this work, we develop a reduced-order dynamic model for the thermospheric density by computing the main spatial modes of the atmosphere and deriving a linear model for the dynamics. This model is then used to estimate the density using two-line element (TLE) data by simultaneously estimating the reduced-order modes and the orbits and ballistic coefficients of several objects using an unscented Kalman filter. Accurate density estimation using the TLEs of 15 objects is demonstrated and validated against CHAMP and GRACE accelerometer-derived densities. Finally, the use of the model for density forecasting is shown.
Date issued
2020
URI
https://hdl.handle.net/1721.1/135442
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Space Weather
Publisher
American Geophysical Union (AGU)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.