MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast algorithms for the quantile regression process

Author(s)
Chernozhukov, Victor; Fernández-Val, Iván; Melly, Blaise
Thumbnail
DownloadSubmitted version (370.1Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature. The widespread use of quantile regression methods depends crucially on the existence of fast algorithms. Despite numerous algorithmic improvements, the computation time is still non-negligible because researchers often estimate many quantile regressions and use the bootstrap for inference. We suggest two new fast algorithms for the estimation of a sequence of quantile regressions at many quantile indexes. The first algorithm applies the preprocessing idea of Portnoy and Koenker (Stat Sci 12(4):279–300, 1997) but exploits a previously estimated quantile regression to guess the sign of the residuals. This step allows for a reduction in the effective sample size. The second algorithm starts from a previously estimated quantile regression at a similar quantile index and updates it using a single Newton–Raphson iteration. The first algorithm is exact, while the second is only asymptotically equivalent to the traditional quantile regression estimator. We also apply the preprocessing idea to the bootstrap by using the sample estimates to guess the sign of the residuals in the bootstrap sample. Simulations show that our new algorithms provide very large improvements in computation time without significant (if any) cost in the quality of the estimates. For instance, we divide by 100 the time required to estimate 99 quantile regressions with 20 regressors and 50,000 observations.
Date issued
2020
URI
https://hdl.handle.net/1721.1/135459
Department
Massachusetts Institute of Technology. Department of Economics
Journal
Empirical Economics
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.