| dc.contributor.author | Neguţ, Andrei | |
| dc.date.accessioned | 2021-10-27T20:23:33Z | |
| dc.date.available | 2021-10-27T20:23:33Z | |
| dc.date.issued | 2020 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/135462 | |
| dc.description.abstract | © 2020 Elsevier Inc. In this paper, we prove that the quantum toroidal algebra Uq,q‾(gl¨n) is isomorphic to the double shuffle algebra of Feigin and Odesskii for the cyclic quiver. The shuffle algebra viewpoint will allow us to prove a factorization formula for the universal R−matrix of the quantum toroidal algebra. | |
| dc.language.iso | en | |
| dc.publisher | Elsevier BV | |
| dc.relation.isversionof | 10.1016/J.AIM.2020.107288 | |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.source | arXiv | |
| dc.title | Quantum toroidal and shuffle algebras | |
| dc.type | Article | |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
| dc.relation.journal | Advances in Mathematics | |
| dc.eprint.version | Original manuscript | |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
| eprint.status | http://purl.org/eprint/status/NonPeerReviewed | |
| dc.date.updated | 2021-05-25T14:00:49Z | |
| dspace.orderedauthors | Neguţ, A | |
| dspace.date.submission | 2021-05-25T14:00:50Z | |
| mit.journal.volume | 372 | |
| mit.license | PUBLISHER_CC | |
| mit.metadata.status | Authority Work and Publication Information Needed | |