MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MALA-within-Gibbs Samplers for High-Dimensional Distributions with Sparse Conditional Structure

Author(s)
Tong, XT; Morzfeld, M; Marzouk, YM
Thumbnail
DownloadPublished version (1.965Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2020 Society for Industrial and Applied Mathematics. Markov chain Monte Carlo (MCMC) samplers are numerical methods for drawing samples from a given target probability distribution. We discuss one particular MCMC sampler, the MALA-within-Gibbs sampler, from the theoretical and practical perspectives. We first show that the acceptance ratio and step size of this sampler are independent of the overall problem dimension when (i) the target distribution has sparse conditional structure, and (ii) this structure is reflected in the partial updating strategy of MALA-within-Gibbs. If, in addition, the target density is blockwise log-concave, then the sampler's convergence rate is independent of dimension. From a practical perspective, we expect that MALA-within-Gibbs is useful for solving high-dimensional Bayesian inference problems where the posterior exhibits sparse conditional structure at least approximately. In this context, a partitioning of the state that correctly reflects the sparse conditional structure must be found, and we illustrate this process in two numerical examples. We also discuss trade-offs between the block size used for partial updating and computational requirements that may increase with the number of blocks.
Date issued
2020
URI
https://hdl.handle.net/1721.1/135471
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
SIAM Journal on Scientific Computing
Publisher
Society for Industrial & Applied Mathematics (SIAM)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.