MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hexahedral Mesh Repair via Sum‐of‐Squares Relaxation

Author(s)
Marschner, Z; Palmer, D; Zhang, P; Solomon, J
Thumbnail
DownloadAccepted version (24.25Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 The Author(s) Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. The validity of trilinear hexahedral (hex) mesh elements is a prerequisite for many applications of hex meshes, such as finite element analysis. A commonly used check for hex mesh validity evaluates mesh quality on the corners of the parameter domain of each hex, an insufficient condition that neglects invalidity elsewhere in the element, but is straightforward to compute. Hex mesh quality optimizations using this validity criterion suffer by being unable to detect invalidities in a hex mesh reliably, let alone fix them. We rectify these challenges by leveraging sum-of-squares relaxations to pinpoint invalidities in a hex mesh efficiently and robustly. Furthermore, we design a hex mesh repair algorithm that can certify validity of the entire hex mesh. We demonstrate our hex mesh repair algorithm on a dataset of meshes that include hexes with both corner and face-interior invalidities and demonstrate that where naïve algorithms would fail to even detect invalidities, we are able to repair them. Our novel methodology also introduces the general machinery of sum-of-squares relaxation to geometry processing, where it has the potential to solve related problems.
Date issued
2020
URI
https://hdl.handle.net/1721.1/135481
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Computer Graphics Forum
Publisher
Wiley

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.