MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Discretized Sum-Product Problem

Author(s)
Guth, Larry; Katz, Nets Hawk; Zahl, Joshua
Thumbnail
DownloadAccepted version (188.2Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title> <jats:p>We give a new proof of the discretized ring theorem for sets of real numbers. As a special case, we show that if $A\subset \mathbb {R}$ is a $(\delta ,1/2)_1$-set in the sense of Katz and Tao, then either $A+A$ or $A.A$ must have measure at least $|A|^{1-\frac {1}{68}}$.</jats:p>
Date issued
2020
URI
https://hdl.handle.net/1721.1/135572
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
International Mathematics Research Notices
Publisher
Oxford University Press (OUP)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.