MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hollow-grained “Voronoi foam” ceramics with high strength and thermal superinsulation up to 1400 °C

Author(s)
Li, Sa; Wang, Chang-An; Yang, Fuqian; An, Linan; So, Kangpyo; Li, Ju; ... Show more Show less
Thumbnail
DownloadAccepted version (1.771Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2021 Elsevier Ltd Nanostructures tend to be unstable at high temperatures due to large capillary energies, and therefore nanotechnology has not yet found many high-temperature applications at 1000 °C and above. By taking advantage of the high-temperature stability of refractory ceramics, here we develop a new approach of making hollow nano-grained materials to achieve thermal superinsulation across a wide temperature range, where the gaseous voids are mostly isolated within individual grain, with size comparable to the mean free path of air molecules to lower the thermal conduction by Knudsen effect. We have proved this general concept with hollow-grained La2Zr2O7 ceramic, and demonstrated exceptionally low thermal conductivity (0.016 W/(m⋅K)), the lowest ever reported for hard materials at or above room temperature. The centimeter-scale samples also have ultrahigh compressive strength (251 MPa), tensile strength in bending up to 100 MPa, and excellent thermal stability up to 1400 °C in air, due to monodispersity of pores that delays coarsening.
Date issued
2021
URI
https://hdl.handle.net/1721.1/135580
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Materials Today
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.