MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessment of Isoprene as a Possible Biosignature Gas in Exoplanets with Anoxic Atmospheres

Author(s)
Zhan, Zhuchang; Seager, Sara; Petkowski, Janusz Jurand; Sousa-Silva, Clara; Ranjan, Sukrit; Huang, Jingcheng; Bains, William; ... Show more Show less
Thumbnail
DownloadPublished version (1.930Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Research for possible biosignature gases on habitable exoplanet atmosphere is accelerating. We add isoprene, C5H8, to the roster of biosignature gases. We found that formation of isoprene geochemical formation is highly thermodynamically disfavored and has no known abiotic false positives. The isoprene production rate on Earth rivals that of methane (~ 500 Tg yr-1). On Earth, isoprene is rapidly destroyed by oxygen-containing radicals, but its production is ubiquitous to a diverse array of evolutionarily distant organisms, from bacteria to plants and animals-few, if any at all, volatile secondary metabolite has a larger evolutionary reach. While non-photochemical sinks of isoprene may exist, the destruction of isoprene in an anoxic atmosphere is mainly driven by photochemistry. Motivated by the concept that isoprene might accumulate in anoxic environments, we model the photochemistry and spectroscopic detection of isoprene in habitable temperature, rocky exoplanet anoxic atmospheres with a variety of atmosphere compositions under different host star UV fluxes. Limited by an assumed 10 ppm instrument noise floor, habitable atmosphere characterization using JWST is only achievable with transit signal similar or larger than that for a super-Earth sized exoplanet transiting an M dwarf star with an H2-dominated atmosphere. Unfortunately, isoprene cannot accumulate to detectable abundance without entering a run-away phase, which occurs at a very high production rate, ~ 100 times Earth's production rate. In this run-away scenario isoprene will accumulate to > 100 ppm and its spectral features are detectable with ~ 20 JWST transits. One caveat is that some spectral features are hard to be distinguished from that of methane. Despite these challenges, isoprene is worth adding to the menu of potential biosignature gases.
Date issued
2021
URI
https://hdl.handle.net/1721.1/135597
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Chemistry
Journal
Astrobiology
Publisher
Mary Ann Liebert Inc

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.