Tautological relations via ����-spin structures
Author(s)
Pandharipande, R; Pixton, A; Zvonkine, D
DownloadPublished version (560.0Kb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
<p>Relations among tautological classes on <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper M overbar Subscript g comma n">
<mml:semantics>
<mml:msub>
<mml:mover>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi>
</mml:mrow>
<mml:mo accent="false">¯<!-- ¯ --></mml:mo>
</mml:mover>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi>g</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msub>
<mml:annotation encoding="application/x-tex">\overline {\mathcal {M}}_{g,n}</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> are obtained via the study of Witten’s <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r">
<mml:semantics>
<mml:mi>r</mml:mi>
<mml:annotation encoding="application/x-tex">r</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>-spin theory for higher <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r">
<mml:semantics>
<mml:mi>r</mml:mi>
<mml:annotation encoding="application/x-tex">r</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>. In order to calculate the quantum product, a new formula relating the <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r">
<mml:semantics>
<mml:mi>r</mml:mi>
<mml:annotation encoding="application/x-tex">r</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>-spin correlators in genus 0 to the representation theory of <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sans-serif s sans-serif l Subscript 2 Baseline left-parenthesis double-struck upper C right-parenthesis">
<mml:semantics>
<mml:mrow>
<mml:msub>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="sans-serif">s</mml:mi>
<mml:mi mathvariant="sans-serif">l</mml:mi>
</mml:mrow>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mo stretchy="false">(</mml:mo>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="double-struck">C</mml:mi>
</mml:mrow>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:annotation encoding="application/x-tex">{\mathsf {sl}}_2(\mathbb {C})</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> is proven. The Givental-Teleman classification of CohFT (cohomological field theory) is used at two special semisimple points of the associated Frobenius manifold. At the first semisimple point, the <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R">
<mml:semantics>
<mml:mi>R</mml:mi>
<mml:annotation encoding="application/x-tex">R</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>-matrix is exactly solved in terms of hypergeometric series. As a result, an explicit formula for Witten’s <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r">
<mml:semantics>
<mml:mi>r</mml:mi>
<mml:annotation encoding="application/x-tex">r</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>-spin class is obtained (along with tautological relations in higher degrees). As an application, the <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r equals 4">
<mml:semantics>
<mml:mrow>
<mml:mi>r</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>4</mml:mn>
</mml:mrow>
<mml:annotation encoding="application/x-tex">r=4</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> relations are used to bound the Betti numbers of <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R Superscript asterisk Baseline left-parenthesis script upper M Subscript g Baseline right-parenthesis">
<mml:semantics>
<mml:mrow>
<mml:msup>
<mml:mi>R</mml:mi>
<mml:mo>∗<!-- ∗ --></mml:mo>
</mml:msup>
<mml:mo stretchy="false">(</mml:mo>
<mml:msub>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi>
</mml:mrow>
<mml:mi>g</mml:mi>
</mml:msub>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:annotation encoding="application/x-tex">R^*(\mathcal {M}_g)</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>. At the second semisimple point, the form of the <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R">
<mml:semantics>
<mml:mi>R</mml:mi>
<mml:annotation encoding="application/x-tex">R</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>-matrix implies a polynomiality property in <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r">
<mml:semantics>
<mml:mi>r</mml:mi>
<mml:annotation encoding="application/x-tex">r</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> of Witten’s <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r">
<mml:semantics>
<mml:mi>r</mml:mi>
<mml:annotation encoding="application/x-tex">r</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>-spin class.</p>
<p>In Appendix A (with F. Janda), a conjecture relating the <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r equals 0">
<mml:semantics>
<mml:mrow>
<mml:mi>r</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:annotation encoding="application/x-tex">r=0</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> limit of Witten’s <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r">
<mml:semantics>
<mml:mi>r</mml:mi>
<mml:annotation encoding="application/x-tex">r</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>-spin class to the class of the moduli space of holomorphic differentials is presented.</p>
Date issued
2019Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Journal of Algebraic Geometry
Publisher
American Mathematical Society (AMS)