Show simple item record

dc.contributor.authorHe, Xuhua
dc.contributor.authorKim, Ju-Lee
dc.date.accessioned2022-07-12T19:33:49Z
dc.date.available2021-10-27T20:24:19Z
dc.date.available2022-07-12T19:33:49Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/135624.2
dc.description.abstract© 2019 American Mathematical Society. Cocenters of Hecke algebras H play an important role in studying mod ℓ or ℂ harmonic analysis on connected p-adic reductive groups. On the other hand, the depth r Hecke algebra Hr+ is well suited to study depth r smooth representations. In this paper, we study depth r rigid cocenters Hr+rig of a connected reductive p-adic group over rings of characteristic zero or ℓ ≠ p. More precisely, under some mild hypotheses, we establish a Jordan decomposition of the depth r rigid cocenter, hence find an explicit basis of Hr+rig.en_US
dc.language.isoen
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionof10.1090/ert/528en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleJordan decompositions of cocenters of reductive ����-adic groupsen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalRepresentation Theory of the American Mathematical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-11-14T17:54:48Z
dspace.orderedauthorsHe, X; Kim, J-Len_US
dspace.date.submission2019-11-14T17:54:51Z
mit.journal.volume23en_US
mit.journal.issue10en_US
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version