Show simple item record

dc.contributor.authorCho, Soo-Yeon
dc.contributor.authorGong, Xun
dc.contributor.authorKoman, Volodymyr B.
dc.contributor.authorKuehne, Matthias
dc.contributor.authorMoon, Sun Jin
dc.contributor.authorSon, Manki
dc.contributor.authorLew, Tedrick Thomas Salim
dc.contributor.authorGordiichuk, Pavlo
dc.contributor.authorJin, Xiaojia
dc.contributor.authorSikes, Hadley D.
dc.contributor.authorStrano, Michael S.
dc.date.accessioned2022-03-23T15:25:03Z
dc.date.available2021-10-27T20:24:22Z
dc.date.available2022-03-23T15:25:03Z
dc.date.issued2021-05
dc.date.submitted2021-01
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/1721.1/135634.2
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Nanosensors have proven to be powerful tools to monitor single cells, achieving spatiotemporal precision even at molecular level. However, there has not been way of extending this approach to statistically relevant numbers of living cells. Herein, we design and fabricate nanosensor array in microfluidics that addresses this limitation, creating a Nanosensor Chemical Cytometry (NCC). nIR fluorescent carbon nanotube array is integrated along microfluidic channel through which flowing cells is guided. We can utilize the flowing cell itself as highly informative Gaussian lenses projecting nIR profiles and extract rich information. This unique biophotonic waveguide allows for quantified cross-correlation of biomolecular information with various physical properties and creates label-free chemical cytometer for cellular heterogeneity measurement. As an example, the NCC can profile the immune heterogeneities of human monocyte populations at attomolar sensitivity in completely non-destructive and real-time manner with rate of ~600 cells/hr, highest range demonstrated to date for state-of-the-art chemical cytometry.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-021-23416-1en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleCellular lensing and near infrared fluorescent nanosensor arrays to enable chemical efflux cytometryen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-06-17T17:27:46Z
dspace.orderedauthorsCho, S-Y; Gong, X; Koman, VB; Kuehne, M; Moon, SJ; Son, M; Lew, TTS; Gordiichuk, P; Jin, X; Sikes, HD; Strano, MSen_US
dspace.date.submission2021-06-17T17:27:49Z
mit.journal.volume12en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version