MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measurement of Navier Slip on Individual Nanoparticles in Liquid

Author(s)
Collis, Jesse F; Olcum, Selim; Chakraborty, Debadi; Manalis, Scott R; Sader, John E
Thumbnail
DownloadSubmitted version (2.338Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The Navier slip condition describes the motion of a liquid relative to a neighboring solid surface, with its characteristic Navier slip length being a constitutive property of the solid-liquid interface. Measurement of this slip length is complicated by its small magnitude, expected to be in the nanometer range based on molecular simulations. Here, we report an experimental technique that interrogates the Navier slip length on individual nanoparticles immersed in liquid with subnanometer precision. Proof-of-principle experiments on individual, citrate-stabilized, gold nanoparticles in water give a constant slip length of 2.7 ± 0.6 nm (95% C.I.), independent of particle size. Achieving this feature of size independence is central to any measurement of this constitutive property, which is facilitated through the use of individual particles of varying radii. This demonstration motivates studies that can now validate the wealth of existing molecular simulation data on slip.
Date issued
2021
URI
https://hdl.handle.net/1721.1/135674
Department
Koch Institute for Integrative Cancer Research at MIT
Journal
Nano Letters
Publisher
American Chemical Society (ACS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.