Show simple item record

dc.contributor.authorHammelman, Jennifer
dc.contributor.authorGifford, David K
dc.date.accessioned2021-10-27T20:28:49Z
dc.date.available2021-10-27T20:28:49Z
dc.date.issued2021-08
dc.identifier.urihttps://hdl.handle.net/1721.1/135690
dc.description.abstract<jats:p>Discovering sequence features that differentially direct cells to alternate fates is key to understanding both cellular development and the consequences of disease related mutations. We introduce Expected Pattern Effect and Differential Expected Pattern Effect, two black-box methods that can interpret genome regulatory sequences for cell type-specific or condition specific patterns. We show that these methods identify relevant transcription factor motifs and spacings that are predictive of cell state-specific chromatin accessibility. Finally, we integrate these methods into framework that is readily accessible to non-experts and available for download as a binary or installed via PyPI or bioconda at <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://cgs.csail.mit.edu/deepaccess-package/" xlink:type="simple">https://cgs.csail.mit.edu/deepaccess-package/</jats:ext-link>.</jats:p>en_US
dc.language.isoen
dc.publisherPublic Library of Science (PLoS)en_US
dc.relation.isversionof10.1371/journal.pcbi.1009282en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourcePLoSen_US
dc.titleDiscovering differential genome sequence activity with interpretable and efficient deep learningen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computational and Systems Biology Program
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.relation.journalPLOS Computational Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-09-13T11:59:37Z
dspace.orderedauthorsHammelman, J; Gifford, DKen_US
dspace.date.submission2021-09-13T11:59:39Z
mit.journal.volume17en_US
mit.journal.issue8en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version