Show simple item record

dc.contributor.authorFigalli, Alessio
dc.contributor.authorJerison, David
dc.date.accessioned2021-10-27T20:28:52Z
dc.date.available2021-10-27T20:28:52Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/1721.1/135700
dc.description.abstract© 2017, Fudan University and Springer-Verlag Berlin Heidelberg. The authors prove a quantitative stability result for the Brunn-Minkowski inequality on sets of equal volume: If |A| = |B| > 0 and |A + B|1/n = (2+δ)|A|1/n for some small δ, then, up to a translation, both A and B are close (in terms of δ) to a convex set K. Although this result was already proved by the authors in a previous paper, the present paper provides a more elementary proof that the authors believe has its own interest. Also, the result here provides a stronger estimate for the stability exponent than the previous result of the authors.
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.isversionof10.1007/S11401-017-1075-8
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceOther repository
dc.titleQuantitative stability of the Brunn-Minkowski inequality for sets of equal volume
dc.typeArticle
dc.identifier.citationFigalli, Alessio, and David Jerison. "Quantitative Stability of the Brunn-Minkowski Inequality for Sets of Equal Volume." Chinese Annals of Mathematics Series B 38 2 (2017): 393-412.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalChinese Annals of Mathematics. Series B
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-04-29T14:29:02Z
dspace.orderedauthorsFigalli, A; Jerison, D
dspace.date.submission2021-04-29T14:29:03Z
mit.journal.volume38
mit.journal.issue2
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record