MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New geometric algorithms for fully connected staged self-assembly

Author(s)
Demaine, Erik D; Fekete, Sándor P; Scheffer, Christian; Schmidt, Arne
Thumbnail
DownloadAccepted version (857.0Kb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2016 Elsevier B.V. We consider staged self-assembly systems, in which square-shaped tiles can be added to bins in several stages. Within these bins, the tiles may connect to each other, depending on the glue types of their edges. Previous work by Demaine et al. showed that a relatively small number of tile types suffices to produce arbitrary shapes in this model. However, these constructions were only based on a spanning tree of the geometric shape, so they did not produce full connectivity of the underlying grid graph in the case of shapes with holes; self-assembly of fully connected assemblies with a polylogarithmic number of stages was left as a major open problem. We resolve this challenge by presenting new systems for staged assembly that produce fully connected polyominoes in O(log2⁡n) stages, for various scale factors and temperature τ=2 as well as τ=1. Our constructions work even for shapes with holes and use only a constant number of glues and tiles. Moreover, the underlying approach is more geometric in nature, implying that it promises to be more feasible for shapes with compact geometric description.
Date issued
2017
URI
https://hdl.handle.net/1721.1/135768
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Theoretical Computer Science
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.