Show simple item record

dc.contributor.authorKunitake, Jennie AMR
dc.contributor.authorChoi, Siyoung
dc.contributor.authorNguyen, Kayla X
dc.contributor.authorLee, Meredith M
dc.contributor.authorHe, Frank
dc.contributor.authorSudilovsky, Daniel
dc.contributor.authorMorris, Patrick G
dc.contributor.authorJochelson, Maxine S
dc.contributor.authorHudis, Clifford A
dc.contributor.authorMuller, David A
dc.contributor.authorFratzl, Peter
dc.contributor.authorFischbach, Claudia
dc.contributor.authorMasic, Admir
dc.contributor.authorEstroff, Lara A
dc.date.accessioned2021-10-27T20:29:14Z
dc.date.available2021-10-27T20:29:14Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/1721.1/135775
dc.description.abstract© 2017 Elsevier Inc. Microcalcifications (MCs) are routinely used to detect breast cancer in mammography. Little is known, however, about their materials properties and associated organic matrix, or their correlation to breast cancer prognosis. We combine histopathology, Raman microscopy, and electron microscopy to image MCs within snap-frozen human breast tissue and generate micron-scale resolution correlative maps of crystalline phase, trace metals, particle morphology, and organic matrix chemical signatures within high grade ductal carcinoma in situ (DCIS) and invasive cancer. We reveal the heterogeneity of mineral-matrix pairings, including punctate apatitic particles (<2 µm) with associated trace elements (e.g., F, Na, and unexpectedly Al) distributed within the necrotic cores of DCIS, and both apatite and spheroidal whitlockite particles in invasive cancer within a matrix containing spectroscopic signatures of collagen, non-collagen proteins, cholesterol, carotenoids, and DNA. Among the three DCIS samples, we identify key similarities in MC morphology and distribution, supporting a dystrophic mineralization pathway. This multimodal methodology lays the groundwork for establishing MC heterogeneity in the context of breast cancer biology, and could dramatically improve current prognostic models.
dc.language.isoen
dc.publisherElsevier BV
dc.relation.isversionof10.1016/J.JSB.2017.12.002
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcePMC
dc.titleCorrelative imaging reveals physiochemical heterogeneity of microcalcifications in human breast carcinomas
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.relation.journalJournal of Structural Biology
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2020-05-28T18:41:34Z
dspace.orderedauthorsKunitake, JAMR; Choi, S; Nguyen, KX; Lee, MM; He, F; Sudilovsky, D; Morris, PG; Jochelson, MS; Hudis, CA; Muller, DA; Fratzl, P; Fischbach, C; Masic, A; Estroff, LA
dspace.date.submission2020-05-28T18:41:37Z
mit.journal.volume202
mit.journal.issue1
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record