InGaP solar cell on Ge-on-Si virtual substrate for novel solar power conversion
Author(s)
Kim, TW; Albert, BR; Kimerling, LC; Michel, J
DownloadPublished version (2.074Mb)
Terms of use
Metadata
Show full item recordAbstract
© 2018 Author(s). InGaP single-junction solar cells are grown on lattice-matched Ge-on-Si virtual substrates using metal-organic chemical vapor deposition. Optoelectronic simulation results indicate that the optimal collection length for InGaP single-junction solar cells with a carrier lifetime range of 2-5 ns is wider than approximately 1 μm. Electron beam-induced current measurements reveal that the threading dislocation density (TDD) of InGaP solar cells fabricated on Ge and Ge-on-Si substrates is in the range of 104-3 × 107 cm-2. We demonstrate that the open circuit voltage (Voc) of InGaP solar cells is not significantly influenced by TDDs less than 2 × 106 cm-2. Fabricated InGaP solar cells grown on a Ge-on-Si virtual substrate and a Ge substrate exhibit Voc in the range of 0.96 to 1.43 V under an equivalent illumination in the range of ∼0.5 Sun. The estimated efficiency of the InGaP solar cell fabricated on the Ge-on-Si virtual substrate (Ge substrate) at room temperature for the limited incident spectrum spanning the photon energy range of 1.9-2.4 eV varies from 16.6% to 34.3%.
Date issued
2018Department
Massachusetts Institute of Technology. Materials Processing Center; Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Journal of Applied Physics
Publisher
AIP Publishing