MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Magnetization Reversal in Radially Distributed Nanowire Arrays

Author(s)
Garcia, C; Rosa, WO; Garcia, J; Prida, VM; Hernando, B; López, JA; Vargas, P; Ross, CA; ... Show more Show less
Thumbnail
DownloadAccepted version (5.221Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2018 American Chemical Society. The magnetic properties of radially oriented Co, Ni, and CoNi alloy nanowires synthesized by pulsed electrodeposition into porous alumina structures are measured and compared with those of similar nanowires grown in a planar geometry. The alloy composition affects the anisotropy axis direction, which is determined by the balance between the magnetocrystalline and shape anisotropies, lying transverse to the nanowires for Co samples and along the nanowire axis for Ni. Monte Carlo simulations were performed to model the magnetic hysteresis of the radially oriented and planar geometry nanowires using an approach based on the conical distribution of anisotropies. The model provides an excellent fit compared with experimental hysteresis loops.
Date issued
2018
URI
https://hdl.handle.net/1721.1/135790
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Journal of Physical Chemistry C
Publisher
American Chemical Society (ACS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.