Show simple item record

dc.contributor.authorSun, Yifei
dc.contributor.authorKotiuga, Michele
dc.contributor.authorLim, Dawgen
dc.contributor.authorNarayanan, Badri
dc.contributor.authorCherukara, Mathew
dc.contributor.authorZhang, Zhen
dc.contributor.authorDong, Yongqi
dc.contributor.authorKou, Ronghui
dc.contributor.authorSun, Cheng-Jun
dc.contributor.authorLu, Qiyang
dc.contributor.authorWaluyo, Iradwikanari
dc.contributor.authorHunt, Adrian
dc.contributor.authorTanaka, Hidekazu
dc.contributor.authorHattori, Azusa N
dc.contributor.authorGamage, Sampath
dc.contributor.authorAbate, Yohannes
dc.contributor.authorPol, Vilas G
dc.contributor.authorZhou, Hua
dc.contributor.authorSankaranarayanan, Subramanian KRS
dc.contributor.authorYildiz, Bilge
dc.contributor.authorRabe, Karin M
dc.contributor.authorRamanathan, Shriram
dc.date.accessioned2022-07-08T20:49:16Z
dc.date.available2021-10-27T20:29:21Z
dc.date.available2022-07-08T20:49:16Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/1721.1/135801.2
dc.description.abstract© 2018 National Academy of Sciences. All rights reserved. Solid-state ion shuttles are of broad interest in electrochemical devices, nonvolatile memory, neuromorphic computing, and bio-mimicry utilizing synthetic membranes. Traditional design approaches are primarily based on substitutional doping of dissimilar valent cations in a solid lattice, which has inherent limits on dopant concentration and thereby ionic conductivity. Here, we demonstrate perovskite nickelates as Li-ion shuttles with simultaneous suppression of electronic transport via Mott transition. Electrochemically lithiated SmNiO3 (Li-SNO) contains a large amount of mobile Li+ located in interstitial sites of the perovskite approaching one dopant ion per unit cell. A significant lattice expansion associated with interstitial doping allows for fast Li+ conduction with reduced activation energy. We further present a generalization of this approach with results on other rare-earth perovskite nickelates as well as dopants such as Na+. The results highlight the potential of quantum materials and emergent physics in design of ion conductors.en_US
dc.language.isoen
dc.publisherProceedings of the National Academy of Sciencesen_US
dc.relation.isversionof10.1073/PNAS.1805029115en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleStrongly correlated perovskite lithium ion shuttlesen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Electrochemical Interfacesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.relation.journalProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-09-16T13:18:30Z
dspace.orderedauthorsSun, Y; Kotiuga, M; Lim, D; Narayanan, B; Cherukara, M; Zhang, Z; Dong, Y; Kou, R; Sun, C-J; Lu, Q; Waluyo, I; Hunt, A; Tanaka, H; Hattori, AN; Gamage, S; Abate, Y; Pol, VG; Zhou, H; Sankaranarayanan, SKRS; Yildiz, B; Rabe, KM; Ramanathan, Sen_US
dspace.date.submission2019-09-16T13:18:32Z
mit.journal.volume115en_US
mit.journal.issue39en_US
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version