MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A combined photoionization time-of-flight mass spectrometry and laser absorption spectrometry flash photolysis apparatus for simultaneous determination of reaction rates and product branching

Author(s)
Middaugh, Joshua E; Buras, Zachary J; Matrat, Mickael; Chu, Te-Chun; Kim, Young-Seok; Alecu, Ionut M; Vasiliou, AnGayle K; Goldsmith, C Franklin; Green, William H; ... Show more Show less
Thumbnail
DownloadPublished version (3.691Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2018 Author(s). In recent years, predictions of product branching for reactions of consequence to both combustion and atmospheric chemistry have outpaced validating experiments. An apparatus is described that aims to fill this void by combining several well-known experimental techniques into one: flash photolysis for radical generation, multiple-pass laser absorption spectrometry (LAS) for overall kinetics measurements, and time-resolved photoionization time-of-flight mass spectrometry (PI TOF-MS) for product branching quantification. The sensitivity of both the LAS and PI TOF-MS detection techniques is shown to be suitable for experiments with initial photolytically generated radical concentrations of ∼1 × 1012 molecules cm-3. As it is fast (μs time resolution) and non-intrusive, LAS is preferred for accurate kinetics (time-dependence) measurements. By contrast, PI TOF-MS is preferred for product quantification because it provides a near-complete picture of the reactor composition in a single mass spectrum. The value of simultaneous LAS and PI TOF-MS detection is demonstrated for the chemically interesting phenyl radical + propene system.
Date issued
2018
URI
https://hdl.handle.net/1721.1/135828
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Review of Scientific Instruments
Publisher
AIP Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.