MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engineered microbial biofuel production and recovery under supercritical carbon dioxide

Author(s)
Boock, Jason T; Freedman, Adam JE; Tompsett, Geoffrey A; Muse, Sarah K; Allen, Audrey J; Jackson, Luke A; Castro-Dominguez, Bernardo; Timko, Michael T; Prather, Kristala LJ; Thompson, Janelle R; ... Show more Show less
Thumbnail
DownloadPublished version (1.059Mb)
Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2019, The Author(s). Culture contamination, end-product toxicity, and energy efficient product recovery are long-standing bioprocess challenges. To solve these problems, we propose a high-pressure fermentation strategy, coupled with in situ extraction using the abundant and renewable solvent supercritical carbon dioxide (scCO 2 ), which is also known for its broad microbial lethality. Towards this goal, we report the domestication and engineering of a scCO 2 -tolerant strain of Bacillus megaterium, previously isolated from formation waters from the McElmo Dome CO 2 field, to produce branched alcohols that have potential use as biofuels. After establishing induced-expression under scCO 2 , isobutanol production from 2-ketoisovalerate is observed with greater than 40% yield with co-produced isopentanol. Finally, we present a process model to compare the energy required for our process to other in situ extraction methods, such as gas stripping, finding scCO 2 extraction to be potentially competitive, if not superior.
Date issued
2019
URI
https://hdl.handle.net/1721.1/135865
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Nature Communications
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.