MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems

Author(s)
Bavle, Hriday; De La Puente, Paloma; How, Jonathan P; Campoy, Pascual
Thumbnail
DownloadPublished version (4.073Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2013 IEEE. Indoor environments have abundant presence of high-level semantic information which can provide a better understanding of the environment for robots to improve the uncertainty in their pose estimate. Although semantic information has proved to be useful, there are several challenges faced by the research community to accurately perceive, extract and utilize such semantic information from the environment. In order to address these challenges, in this paper we present a lightweight and real-time visual semantic SLAM framework running on board aerial robotic platforms. This novel method combines low-level visual/visual-inertial odometry (VO/VIO) along with geometrical information corresponding to planar surfaces extracted from detected semantic objects. Extracting the planar surfaces from selected semantic objects provides enhanced robustness and makes it possible to precisely improve the metric estimates rapidly, simultaneously generalizing to several object instances irrespective of their shape and size. Our graph-based approach can integrate several state of the art VO/VIO algorithms along with the state of the art object detectors in order to estimate the complete 6DoF pose of the robot while simultaneously creating a sparse semantic map of the environment. No prior knowledge of the objects is required, which is a significant advantage over other works. We test our approach on a standard RGB-D dataset comparing its performance with the state of the art SLAM algorithms. We also perform several challenging indoor experiments validating our approach in presence of distinct environmental conditions and furthermore test it on board an aerial robot. Video: https://vimeo.com/368217703 Released Code: https://bitbucket.org/hridaybavle/semantic_slam.git
Date issued
2020
URI
https://hdl.handle.net/1721.1/135936
Department
Massachusetts Institute of Technology. Aerospace Controls Laboratory; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
IEEE Access
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.