MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Winning Models for Grade Point Average, Grit, and Layoff in the Fragile Families Challenge

Author(s)
Rigobon, Daniel E; Jahani, Eaman; Suhara, Yoshihiko; AlGhoneim, Khaled; Alghunaim, Abdulaziz; Pentland, Alex Sandy; Almaatouq, Abdullah; ... Show more Show less
Thumbnail
DownloadPublished version (943.7Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution NonCommercial License 4.0 https://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
<jats:p> In this article, the authors discuss and analyze their approach to the Fragile Families Challenge. The data consisted of more than 12,000 features (covariates) about the children and their parents, schools, and overall environments from birth to age 9. The authors’ modular and collaborative approach parallelized prediction tasks and relied primarily on existing data science techniques, including (1) data preprocessing: elimination of low variance features, imputation of missing data, and construction of composite features; (2) feature selection through univariate mutual information and extraction of nonzero least absolute shrinkage and selection operator coefficients; (3) three machine learning models: random forest, elastic net, and gradient-boosted trees; and finally (4) prediction aggregation according to performance. The top-performing submissions produced winning out-of-sample predictions for three outcomes: grade point average, grit, and layoff. However, predictions were at most 20 percent better than a baseline that predicted the mean value of the training data for each outcome. </jats:p>
Date issued
2019
URI
https://hdl.handle.net/1721.1/135941
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; MIT Connection Science (Research institute); Massachusetts Institute of Technology. Media Laboratory; Sloan School of Management
Journal
Socius: Sociological Research for a Dynamic World
Publisher
SAGE Publications

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.