MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bregman Divergence Bounds and Universality Properties of the Logarithmic Loss

Author(s)
Painsky, Amichai; Wornell, Gregory W
Thumbnail
DownloadAccepted version (667.7Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 1963-2012 IEEE. A loss function measures the discrepancy between the true values and their estimated fits, for a given instance of data. In classification problems, a loss function is said to be proper if a minimizer of the expected loss is the true underlying probability. We show that for binary classification, the divergence associated with smooth, proper, and convex loss functions is upper bounded by the Kullback-Leibler (KL) divergence, to within a normalization constant. This implies that by minimizing the logarithmic loss associated with the KL divergence, we minimize an upper bound to any choice of loss from this set. As such the logarithmic loss is universal in the sense of providing performance guarantees with respect to a broad class of accuracy measures. Importantly, this notion of universality is not problem-specific, enabling its use in diverse applications, including predictive modeling, data clustering and sample complexity analysis. Generalizations to arbitary finite alphabets are also developed. The derived inequalities extend several well-known f-divergence results.
Date issued
2020
URI
https://hdl.handle.net/1721.1/135947
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Transactions on Information Theory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.