MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time scales for nonlinear processes in preheating after multifield inflation with nonminimal couplings

Author(s)
van de Vis, Jorinde; Nguyen, Rachel; Sfakianakis, Evangelos I; Giblin, John T; Kaiser, David I
Thumbnail
DownloadPublished version (2.121Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2020 American Physical Society. We have conducted extensive lattice simulations to study the postinflation dynamics of multifield models involving nonminimal couplings. We explore the parameter dependence of preheating in these models and describe the various time scales that control such nonlinear processes as energy transfer, rescattering, and the approach to radiation domination and thermalization. In the limit of large nonminimal couplings (ζI∼100), we find that efficient transfer of energy from the inflaton condensate to radiative degrees of freedom, emergence of a radiation-dominated equation of state, and the onset of thermalization each consistently occur within Nrehâ‰3 e-folds after the end of inflation, largely independent of the values of the other couplings in the models. The exception is the case of negative ellipticity, in which there is a misalignment between the dominant direction in field space along which the system evolves and the larger of the nonminimal couplings ζI. In those cases, the field-space-driven parametric resonance is effectively shut off. More generally, the competition between the scalar fields' potential and the field-space manifold structure can yield interesting phenomena such as two-stage resonances. Across many regions of parameter space, we find efficient re-scattering between the distinct fields, leading to a partial memory loss of the shape of the initial fluctuation spectrum. Despite the explosive particle production, which can lead to a quick depletion of the background energy density, the nonlinear processes do not induce any superhorizon correlations after the end of inflation in these models, which keeps predictions for cosmic microwave background observables unaffected by the late-time amplification of isocurvature fluctuations. Hence the excellent agreement between primordial observables and recent observations is preserved for this class of models, even when we consider postinflation dynamics.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136007
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review D
Publisher
American Physical Society (APS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.