MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal charging of an electric vehicle battery pack: A real-time sensitivity-based model predictive control approach

Author(s)
Pozzi, Andrea; Torchio, Marcello; Braatz, Richard D; Raimondo, Davide M
Thumbnail
DownloadSubmitted version (1.007Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2020 Elsevier B.V. Lithium-ion battery packs are usually composed of hundreds of cells arranged in series and parallel connections. The proper functioning of these complex devices requires suitable Battery Management Systems (BMSs). Advanced BMSs rely on mathematical models to assure safety and high performance. While many approaches have been proposed for the management of single cells, the control of multiple cells has been less investigated and usually relies on simplified models such as equivalent circuit models. This paper addresses the management of a battery pack in which each cell is explicitly modelled as the Single Particle Model with electrolyte and thermal dynamics. A nonlinear Model Predictive Control (MPC) is presented for optimally charging the battery pack while taking voltage and temperature limits on each cell into account. Since the computational cost of nonlinear MPC grows significantly with the complexity of the underlying model, a sensitivity-based MPC (sMPC) is proposed, in which the model adopted is obtained by linearizing the dynamics along a nominal trajectory that is updated over time. The resulting sMPC optimizations are quadratic programs which can be solved in real-time even for large battery packs (e.g. fully electric motorbike with 156 cells) while achieving the same performance of the nonlinear MPC.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136009
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Journal of Power Sources
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.