MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functionally uncoupled transcription–translation in Bacillus subtilis

Author(s)
Johnson, Grace E; Lalanne, Jean-Benoît; Peters, Michelle L; Li, Gene-Wei
Thumbnail
DownloadAccepted version (4.066Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Tight coupling of transcription and translation is considered a defining feature of bacterial gene expression1,2. The pioneering ribosome can both physically associate and kinetically coordinate with RNA polymerase (RNAP)3–11, forming a signal-integration hub for co-transcriptional regulation that includes translation-based attenuation12,13 and RNA quality control2. However, it remains unclear whether transcription–translation coupling—together with its broad functional consequences—is indeed a fundamental characteristic of bacteria other than Escherichia coli. Here we show that RNAPs outpace pioneering ribosomes in the Gram-positive model bacterium Bacillus subtilis, and that this ‘runaway transcription’ creates alternative rules for both global RNA surveillance and translational control of nascent RNA. In particular, uncoupled RNAPs in B. subtilis explain the diminished role of Rho-dependent transcription termination, as well as the prevalence of mRNA leaders that use riboswitches and RNA-binding proteins. More broadly, we identified widespread genomic signatures of runaway transcription in distinct phyla across the bacterial domain. Our results show that coupled RNAP–ribosome movement is not a general hallmark of bacteria. Instead, translation-coupled transcription and runaway transcription constitute two principal modes of gene expression that determine genome-specific regulatory mechanisms in prokaryotes.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136012
Department
Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Physics
Journal
Nature
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.