MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conditioning of Partial Nonuniform Fourier Matrices with Clustered Nodes

Author(s)
Batenkov, Dmitry; Demanet, Laurent; Goldman, Gil; Yomdin, Yosef
Thumbnail
DownloadPublished version (849.2Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2020 Society for Industrial and Applied Mathematics We prove sharp lower bounds for the smallest singular value of a partial Fourier matrix with arbitrary "off the grid" nodes (equivalently, a rectangular Vandermonde matrix with the nodes on the unit circle) in the case when some of the nodes are separated by less than the inverse bandwidth. The bound is polynomial in the reciprocal of the so-called superresolution factor, while the exponent is controlled by the maximal number of nodes which are clustered together. As a corollary, we obtain sharp minimax bounds for the problem of sparse superresolution on a grid under the partial clustering assumptions.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136016
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
SIAM Journal on Matrix Analysis and Applications
Publisher
Society for Industrial & Applied Mathematics (SIAM)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.