MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Increased demand for NAD+ relative to ATP drives aerobic glycolysis

Author(s)
Luengo, Alba; Li, Zhaoqi; Gui, Dan Y; Sullivan, Lucas B; Zagorulya, Maria; Do, Brian T; Ferreira, Raphael; Naamati, Adi; Ali, Ahmed; Lewis, Caroline A; Thomas, Craig J; Spranger, Stefani; Matheson, Nicholas J; Vander Heiden, Matthew G; ... Show more Show less
Thumbnail
DownloadPublished version (2.700Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Aerobic glycolysis, or preferential fermentation of glucose-derived pyruvate to lactate despite available oxygen, is associated with proliferation across many organisms and conditions. To better understand that association, we examined the metabolic consequence of activating the pyruvate dehydrogenase complex (PDH) to increase pyruvate oxidation at the expense of fermentation. We find that increasing PDH activity impairs cell proliferation by reducing the NAD /NADH ratio. This change in NAD /NADH is caused by increased mitochondrial membrane potential that impairs mitochondrial electron transport and NAD regeneration. Uncoupling respiration from ATP synthesis or increasing ATP hydrolysis restores NAD /NADH homeostasis and proliferation even when glucose oxidation is increased. These data suggest that when demand for NAD to support oxidation reactions exceeds the rate of ATP turnover in cells, NAD regeneration by mitochondrial respiration becomes constrained, promoting fermentation, despite available oxygen. This argues that cells engage in aerobic glycolysis when the demand for NAD is in excess of the demand for ATP. + + + + + + +
Date issued
2021
URI
https://hdl.handle.net/1721.1/136078
Department
Koch Institute for Integrative Cancer Research at MIT; Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research
Journal
Molecular Cell
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.