MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Longitudinal wastewater sampling in buildings reveals temporal dynamics of metabolites

Author(s)
Evans, Ethan D; Dai, Chengzhen; Isazadeh, Siavash; Park, Shinkyu; Ratti, Carlo; Alm, Eric J; ... Show more Show less
Thumbnail
DownloadPublished version (5.003Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Copyright: © 2020 Evans et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Direct sampling of building wastewater has the potential to enable “precision public health” observations and interventions. Temporal sampling offers additional dynamic information that can be used to increase the informational content of individual metabolic “features”, but few studies have focused on high-resolution sampling. Here, we sampled three spatially close buildings, revealing individual metabolomics features, retention time (rt) and mass-to-charge ratio (mz) pairs, that often possess similar stationary statistical properties, as expected from aggregate sampling. However, the temporal profiles of features-providing orthogonal information to physicochemical properties-illustrate that many possess different feature temporal dynamics (fTDs) across buildings, with large and unpredictable single day deviations from the mean. Internal to a building, numerous and seemingly unrelated features, with mz and rt differences up to hundreds of Daltons and seconds, display highly correlated fTDs, suggesting non-obvious feature relationships. Data-driven building classification achieves high sensitivity and specificity, and extracts building-identifying features found to possess unique dynamics. Analysis of fTDs from many short-duration samples allows for tailored community monitoring with applicability in public health studies.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136139
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Senseable City Laboratory
Journal
PLoS Computational Biology
Publisher
Public Library of Science (PLoS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.