Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/136163.2

Show simple item record

dc.contributor.authorKatsikis, Georgios
dc.contributor.authorCollis, Jesse F
dc.contributor.authorKnudsen, Scott M
dc.contributor.authorAgache, Vincent
dc.contributor.authorSader, John E
dc.contributor.authorManalis, Scott R
dc.date.accessioned2021-10-27T20:31:11Z
dc.date.available2021-10-27T20:31:11Z
dc.date.issued2021-12
dc.identifier.urihttps://hdl.handle.net/1721.1/136163
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Rotational dynamics often challenge physical intuition while enabling unique realizations, from the rotor of a gyroscope that maintains its orientation regardless of the outer gimbals, to a tennis racket that rotates around its handle when tossed face-up in the air. In the context of inertial sensing, which can measure mass with atomic precision, rotational dynamics are normally considered a complication hindering measurement interpretation. Here, we exploit the rotational dynamics of a microfluidic device to develop a modality in inertial sensing. Combining theory with experiments, we show that this modality measures the volume of a rigid particle while normally being insensitive to its density. Paradoxically, particle density only emerges when fluid viscosity becomes dominant over inertia. We explain this paradox via a viscosity-driven, hydrodynamic coupling between the fluid and the particle that activates the rotational inertia of the particle, converting it into a ‘viscous flywheel’. This modality now enables the simultaneous measurement of particle volume and mass in fluid, using a single, high-throughput measurement.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-021-25266-3en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleInertial and viscous flywheel sensing of nanoparticlesen_US
dc.typeArticleen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-09-07T18:07:08Z
dspace.orderedauthorsKatsikis, G; Collis, JF; Knudsen, SM; Agache, V; Sader, JE; Manalis, SRen_US
dspace.date.submission2021-09-07T18:07:09Z
mit.journal.volume12en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version