Show simple item record

dc.contributor.authorDe Sole, Alberto
dc.contributor.authorKac, Victor G
dc.contributor.authorValeri, Daniele
dc.contributor.authorWakimoto, Minoru
dc.date.accessioned2021-10-27T20:34:05Z
dc.date.available2021-10-27T20:34:05Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/136174
dc.description.abstract© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. We develop the notions of multiplicative Lie conformal and Poisson vertex algebras, local and non-local, and their connections to the theory of integrable differential-difference Hamiltonian equations. We establish relations of these notions to q-deformed W-algebras and lattice Poisson algebras. We introduce the notion of Adler type pseudodifference operators and apply them to integrability of differential-difference Hamiltonian equations.
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.relation.isversionof10.1007/S00220-019-03416-5
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleLocal and Non-local Multiplicative Poisson Vertex Algebras and Differential-Difference Equations
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalCommunications in Mathematical Physics
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2019-11-14T17:05:43Z
dspace.orderedauthorsDe Sole, A; Kac, VG; Valeri, D; Wakimoto, M
dspace.date.submission2019-11-14T17:05:46Z
mit.journal.volume370
mit.journal.issue3
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record