dc.contributor.author | De Sole, Alberto | |
dc.contributor.author | Kac, Victor G | |
dc.contributor.author | Valeri, Daniele | |
dc.contributor.author | Wakimoto, Minoru | |
dc.date.accessioned | 2021-10-27T20:34:05Z | |
dc.date.available | 2021-10-27T20:34:05Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/136174 | |
dc.description.abstract | © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. We develop the notions of multiplicative Lie conformal and Poisson vertex algebras, local and non-local, and their connections to the theory of integrable differential-difference Hamiltonian equations. We establish relations of these notions to q-deformed W-algebras and lattice Poisson algebras. We introduce the notion of Adler type pseudodifference operators and apply them to integrability of differential-difference Hamiltonian equations. | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media LLC | |
dc.relation.isversionof | 10.1007/S00220-019-03416-5 | |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source | arXiv | |
dc.title | Local and Non-local Multiplicative Poisson Vertex Algebras and Differential-Difference Equations | |
dc.type | Article | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.relation.journal | Communications in Mathematical Physics | |
dc.eprint.version | Original manuscript | |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | |
dc.date.updated | 2019-11-14T17:05:43Z | |
dspace.orderedauthors | De Sole, A; Kac, VG; Valeri, D; Wakimoto, M | |
dspace.date.submission | 2019-11-14T17:05:46Z | |
mit.journal.volume | 370 | |
mit.journal.issue | 3 | |
mit.metadata.status | Authority Work and Publication Information Needed | |