Show simple item record

dc.contributor.authorDyatlov, Semyon
dc.contributor.authorBorthwick, David
dc.contributor.authorWeich, Tobias
dc.date.accessioned2021-10-27T20:34:09Z
dc.date.available2021-10-27T20:34:09Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/136185
dc.description.abstract© European Mathematical Society 2019. We give a new fractal Weyl upper bound for resonances of convex co-compact hyperbolic manifolds in terms of the dimension n of the manifold and the dimension δ of its limit set. More precisely, we show that as R → ∞, the number of resonances in the box [R, R+1]+i[−β, 0] is O(R m(β,δ)+ ), where the exponent m(β, δ) = min(2δ + 2β + 1 − n, δ) changes its behavior at β = (n − 1)/2 − δ/2. In the case δ < (n − 1)/2, we also give an improved resolvent upper bound in the standard resonance free strip {Im λ > δ − (n − 1)/2}. Both results use the fractal uncertainty principle point of view recently introduced in [DyZa]. The appendix presents numerical evidence for the Weyl upper bound.
dc.language.isoen
dc.publisherEuropean Mathematical Publishing House
dc.relation.isversionof10.4171/JEMS/867
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleImproved fractal Weyl bounds for hyperbolic manifolds. With an appendix by David Borthwick, Semyon Dyatlov and Tobias Weich
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalJournal of the European Mathematical Society
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2021-05-19T16:06:57Z
dspace.orderedauthorsDyatlov, S; Borthwick, D; Weich, T
dspace.date.submission2021-05-19T16:07:00Z
mit.journal.volume21
mit.journal.issue6
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record