Show simple item record

dc.contributor.authorOviedo, Felipe
dc.contributor.authorRen, Zekun
dc.contributor.authorSun, Shijing
dc.contributor.authorSettens, Charles M
dc.contributor.authorLiu, Zhe
dc.contributor.authorHartono, Noor Titan Putri
dc.contributor.authorRamasamy, Savitha
dc.contributor.authorDeCost, Brian L
dc.contributor.authorTian, Siyu IP
dc.contributor.authorRomano, Giuseppe
dc.contributor.authorKusne, Aaron Gilad
dc.contributor.authorBuonassisi, Tonio
dc.date.accessioned2022-06-30T15:46:08Z
dc.date.available2021-10-27T20:34:12Z
dc.date.available2022-06-30T15:46:08Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/136192.2
dc.description.abstract© 2019, The Author(s). X-ray diffraction (XRD) data acquisition and analysis is among the most time-consuming steps in the development cycle of novel thin-film materials. We propose a machine learning-enabled approach to predict crystallographic dimensionality and space group from a limited number of thin-film XRD patterns. We overcome the scarce data problem intrinsic to novel materials development by coupling a supervised machine learning approach with a model-agnostic, physics-informed data augmentation strategy using simulated data from the Inorganic Crystal Structure Database (ICSD) and experimental data. As a test case, 115 thin-film metal-halides spanning three dimensionalities and seven space groups are synthesized and classified. After testing various algorithms, we develop and implement an all convolutional neural network, with cross-validated accuracies for dimensionality and space group classification of 93 and 89%, respectively. We propose average class activation maps, computed from a global average pooling layer, to allow high model interpretability by human experimentalists, elucidating the root causes of misclassification. Finally, we systematically evaluate the maximum XRD pattern step size (data acquisition rate) before loss of predictive accuracy occurs, and determine it to be 0.16° 2θ, which enables an XRD pattern to be obtained and classified in 5.5 min or less.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41524-019-0196-Xen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleFast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networksen_US
dc.typeArticleen_US
dc.contributor.departmentSingapore-MIT Alliance in Research and Technology (SMART)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Photovoltaic Research Laboratoryen_US
dc.contributor.departmentMIT Materials Research Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.relation.journalnpj Computational Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-06-24T19:22:08Z
dspace.orderedauthorsOviedo, F; Ren, Z; Sun, S; Settens, C; Liu, Z; Hartono, NTP; Ramasamy, S; DeCost, BL; Tian, SIP; Romano, G; Gilad Kusne, A; Buonassisi, Ten_US
dspace.date.submission2020-06-24T19:22:10Z
mit.journal.volume5en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version