MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unevenly spaced continuous measurement approach for dual rotating–retarder Mueller matrix ellipsometry

Author(s)
Meng, Kai; Jiang, Bo; Samolis, Christos D; Alrished, Mohamad; Youcef-Toumi, Kamal
Thumbnail
DownloadPublished version (2.339Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. In order to efficiently extract the sample Mueller matrix by dual rotating-retarder ellipsometry, it is critical for the data reduction technique to achieve a minimal data processing burden while considering the ease of retarder control. In this paper, we propose an unevenly spaced sampling strategy to reach a globally optimal measurement matrix with minimum sampling points for continuous measurements. Taking into account the robustness to both systematic errors and detection noise, we develop multi-objective optimization models to identify the optimal unevenly spaced sampling points. A combined global search algorithm based on the multi-objective genetic algorithm is subsequently designed to solve our model. Finally, simulations and experiments are conducted to validate our approach as well as to provide near-optimal schemes for different design scenarios. The results demonstrate that significant improvement on error immunity performance can be achieved by applying an unevenly sampled measurement strategy compared to an evenly sampled one for our ellipsometer scenario.
Date issued
2019
URI
https://hdl.handle.net/1721.1/136204
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Optics Express
Publisher
The Optical Society

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.