| dc.contributor.author | De Sole, Alberto | |
| dc.contributor.author | Kac, Victor G | |
| dc.contributor.author | Valeri, Daniele | |
| dc.contributor.author | Wakimoto, Minoru | |
| dc.date.accessioned | 2021-10-27T20:34:18Z | |
| dc.date.available | 2021-10-27T20:34:18Z | |
| dc.date.issued | 2018 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/136216 | |
| dc.description.abstract | © 2018 The Author(s). Published by Oxford University Press. All rights reserved. We introduce the notion of a multiplicative Poisson λ-bracket, which plays the same role in the theory of Hamiltonian differential-difference equations as the usual Poisson λ-bracket plays in the theory of Hamiltonian partial differential equations (PDE). We classify multiplicative Poisson λ-brackets in one difference variable up to order 5. As an example, we demonstrate how to apply the Lenard-Magri scheme to a compatible pair of multiplicative Poisson λ-brackets of order 1 and 2, to establish integrability of the Volterra chain. | |
| dc.language.iso | en | |
| dc.publisher | Oxford University Press (OUP) | |
| dc.relation.isversionof | 10.1093/IMRN/RNY242 | |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.source | arXiv | |
| dc.title | Poisson λ-brackets for Differential–Difference Equations | |
| dc.type | Article | |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
| dc.relation.journal | International Mathematics Research Notices | |
| dc.eprint.version | Original manuscript | |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
| eprint.status | http://purl.org/eprint/status/NonPeerReviewed | |
| dc.date.updated | 2019-11-14T16:45:53Z | |
| dspace.orderedauthors | De Sole, A; Kac, VG; Valeri, D; Wakimoto, M | |
| dspace.date.submission | 2019-11-14T16:45:56Z | |
| mit.journal.volume | 2020 | |
| mit.journal.issue | 13 | |
| mit.metadata.status | Authority Work and Publication Information Needed | |