Show simple item record

dc.contributor.authorDe Sole, Alberto
dc.contributor.authorKac, Victor G
dc.contributor.authorValeri, Daniele
dc.contributor.authorWakimoto, Minoru
dc.date.accessioned2021-10-27T20:34:18Z
dc.date.available2021-10-27T20:34:18Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/1721.1/136216
dc.description.abstract© 2018 The Author(s). Published by Oxford University Press. All rights reserved. We introduce the notion of a multiplicative Poisson λ-bracket, which plays the same role in the theory of Hamiltonian differential-difference equations as the usual Poisson λ-bracket plays in the theory of Hamiltonian partial differential equations (PDE). We classify multiplicative Poisson λ-brackets in one difference variable up to order 5. As an example, we demonstrate how to apply the Lenard-Magri scheme to a compatible pair of multiplicative Poisson λ-brackets of order 1 and 2, to establish integrability of the Volterra chain.
dc.language.isoen
dc.publisherOxford University Press (OUP)
dc.relation.isversionof10.1093/IMRN/RNY242
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titlePoisson λ-brackets for Differential–Difference Equations
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalInternational Mathematics Research Notices
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2019-11-14T16:45:53Z
dspace.orderedauthorsDe Sole, A; Kac, VG; Valeri, D; Wakimoto, M
dspace.date.submission2019-11-14T16:45:56Z
mit.journal.volume2020
mit.journal.issue13
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record