MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection

Author(s)
Yang, Heng; Antonante, Pasquale; Tzoumas, Vasileios; Carlone, Luca
Thumbnail
DownloadAccepted version (3.661Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2016 IEEE. Semidefinite Programming (SDP) and Sums-of-Squ-ares (SOS) relaxations have led to certifiably optimal non-minimal solvers for several robotics and computer vision problems. However, most non-minimal solvers rely on least squares formulations, and, as a result, are brittle against outliers. While a standard approach to regain robustness against outliers is to use robust cost functions, the latter typically introduce other non-convexities, preventing the use of existing non-minimal solvers. In this letter, we enable the simultaneous use of non-minimal solvers and robust estimation by providing a general-purpose approach for robust global estimation, which can be applied to any problem where a non-minimal solver is available for the outlier-free case. To this end, we leverage the Black-Rangarajan duality between robust estimation and outlier processes (which has been traditionally applied to early vision problems), and show that graduated non-convexity (GNC) can be used in conjunction with non-minimal solvers to compute robust solutions, without requiring an initial guess. we demonstrate the resulting robust non-minimal solvers in applications, including point cloud and mesh registration, pose graph optimization, and image-based object pose estimation (also called shape alignment). Our solvers are robust to 70-80% of outliers, outperform RANSAC, are more accurate than specialized local solvers, and faster than specialized global solvers. We also propose the first certifiably optimal non-minimal solver for shape alignment using SOS relaxation.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136232
Department
Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
IEEE Robotics and Automation Letters
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.