MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the structure of quantum vertex algebras

Author(s)
De Sole, Alberto; Gardini, Matteo; Kac, Victor G
Thumbnail
DownloadSubmitted version (421.5Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 Author(s). A definition of a quantum vertex algebra, which is a deformation of a vertex algebra, was proposed by Etingof and Kazhdan in 1998 [Sel. Math. 6(1), 105-130 (2000)]. In a nutshell, a quantum vertex algebra is a braided state-field correspondence that satisfies associativity and braided locality axioms. We develop a structure theory of quantum vertex algebras, parallel to that of vertex algebras. In particular, we introduce braided n-products for a braided state-field correspondence and prove for quantum vertex algebras a version of the Borcherds identity.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136286
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Mathematical Physics
Publisher
AIP Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.