Show simple item record

dc.contributor.authorMendelson, Dana
dc.contributor.authorNahmod, Andrea R
dc.contributor.authorPavlović, Nataša
dc.contributor.authorRosenzweig, Matthew
dc.contributor.authorStaffilani, Gigliola
dc.date.accessioned2021-10-27T20:34:44Z
dc.date.available2021-10-27T20:34:44Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/136289
dc.description.abstract© 2020 Elsevier Inc. We consider the cubic nonlinear Schrödinger equation (NLS) in any spatial dimension, which is a well-known example of an infinite-dimensional Hamiltonian system. Inspired by the knowledge that the NLS is an effective equation for a system of interacting bosons as the particle number tends to infinity, we provide a derivation of the Hamiltonian structure, which is comprised of both a Hamiltonian functional and a weak symplectic structure, for the nonlinear Schrödinger equation from quantum many-body systems. Our geometric constructions are based on a quantized version of the Poisson structure introduced by Marsden, Morrison and Weinstein [24] for a system describing the evolution of finitely many indistinguishable classical particles.
dc.language.isoen
dc.publisherElsevier BV
dc.relation.isversionof10.1016/J.AIM.2020.107054
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcearXiv
dc.titleA rigorous derivation of the Hamiltonian structure for the nonlinear Schrödinger equation
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalAdvances in Mathematics
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2021-06-01T15:20:47Z
dspace.orderedauthorsMendelson, D; Nahmod, AR; Pavlović, N; Rosenzweig, M; Staffilani, G
dspace.date.submission2021-06-01T15:20:50Z
mit.journal.volume365
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record