MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lattice models that realize Z n -1 symmetry-protected topological states for even n

Author(s)
Tsui, Lokman; Wen, Xiao-Gang
Thumbnail
DownloadPublished version (1.657Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2020 American Physical Society. Higher symmetries can emerge at low energies in a topologically ordered state with no symmetry, when some topological excitations have very high-energy scales while other topological excitations have low energies. The low-energy properties of topological orders in this limit, with the emergent higher symmetries, may be described by higher symmetry-protected topological order. This motivates us, as a simplest example, to study a lattice model of Zn-1 symmetry-protected topological (1-SPT) states in 3+1 dimensions for even n. We write an exactly solvable lattice model and study its boundary transformation. On the boundary, we show the existence of anyons with nontrivial self-statistics. For the n=2 case, where the bulk classification is given by an integer m mod 4, we show that the boundary can be gapped with double-semion topological order for m=1 and toric code for m=2. The bulk ground-state wave-function amplitude is given in terms of the linking numbers of loops in the dual lattice. Our construction can be generalized to arbitrary 1-SPT protected by finite unitary symmetry.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136306
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society (APS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.