MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Twister3: a simple and fast microwire twister

Author(s)
Newman, Jonathan P; Voigts, Jakob; Borius, Maxim; Karlsson, Mattias; Harnett, Mark T; Wilson, Matthew A; ... Show more Show less
Thumbnail
DownloadSubmitted version (22.53Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 IOP Publishing Ltd. Objective. Twisted wire probes (TWPs, e.g. stereotrodes and tetrodes) provide a cheap and reliable method for obtaining high quality, multiple single-unit neural recordings in freely moving animals. Despite their ubiquity, TWPs are constructed using a tedious procedure consisting of manually folding, turning, and fusing microwire. This imposes a significant labor burden on research personnel who use TWPs in their experiments. Approach. To address this issue, we created Twister3, an open-source microwire twisting machine. This machine features a quick-draw wire feeder that eliminates manual wire folding, an auto-aligning motor attachment mechanism which results in consistently straight probes, and a high speed motor for rapid probe turning. Main results. Twister3 greatly increases the speed and repeatability of constructing twisted microwire probes compared to existing options. Users with less than one hour of experience using the device were able to make ∼70 tetrodes per hour, on average. It is cheap, well documented, and all associated designs and source code are open-source. Significance. Twister3 significantly reduces the labor burden of creating high-quality TWPs so electrophysiologists can spend more of their time performing recordings rather than making probes. Therefore, this device is of interest to any lab performing TWP neural recordings, for example, using microdrives.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136314
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Picower Institute for Learning and Memory; McGovern Institute for Brain Research at MIT
Journal
Journal of Neural Engineering
Publisher
IOP Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.