MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Implicit Decomposition for Write-Efficient Connectivity Algorithms

Author(s)
Ben-David, Naama; Blelloch, Guy; Fineman, Jeremy; Gibbons, Phillip; Gu, Yan; McGuffey, Charles; Shun, Julian; ... Show more Show less
Thumbnail
DownloadSubmitted version (658.1Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2018 IEEE. The future of main memory appears to lie in the direction of new technologies that provide strong capacity-To-performance ratios, but have write operations that are much more expensive than reads in terms of latency, bandwidth, and energy. Motivated by this trend, we propose sequential and parallel algorithms to solve graph connectivity problems using significantly fewer writes than conventional algorithms. Our primary algorithmic tool is the construction of an o(n)-sized implicit decomposition of a bounded-degree graph G on n nodes, which combined with read-only access to G enables fast answers to connectivity and biconnectivity queries on G. The construction breaks the linear-write 'barrier', resulting in costs that are asymptotically lower than conventional algorithms while adding only a modest cost to querying time. For general non-sparse graphs on m edges, we also provide the first o(m) writes and O(m) operations parallel algorithms for connectivity and biconnectivity. These algorithms provide insight into how applications can efficiently process computations on large graphs in systems with read-write asymmetry.
Date issued
2018
URI
https://hdl.handle.net/1721.1/136335
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings - 2018 IEEE 32nd International Parallel and Distributed Processing Symposium, IPDPS 2018
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.