MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sampling Based Approaches for Minimizing Regret in Uncertain Markov Decision Processes (MDPs)

Author(s)
Ahmed, Asrar; Varakantham, Pradeep; Lowalekar, Meghna; Adulyasak, Yossiri; Jaillet, Patrick
Thumbnail
DownloadAccepted version (611.3Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2017 AI Access Foundation. All rights reserved. Markov Decision Processes (MDPs) are an effective model to represent decision processes in the presence of transitional uncertainty and reward tradeoffs. However, due to the difficulty in exactly specifying the transition and reward functions in MDPs, researchers have proposed uncertain MDP models and robustness objectives in solving those models. Most approaches for computing robust policies have focused on the computation of maximin policies which maximize the value in the worst case amongst all realisations of uncertainty. Given the overly conservative nature of maximin policies, recent work has proposed minimax regret as an ideal alternative to the maximin objective for robust optimization. However, existing algorithms for handling minimax regret are restricted to models with uncertainty over rewards only and they are also limited in their scalability. Therefore, we provide a general model of uncertain MDPs that considers uncertainty over both transition and reward functions. Furthermore, we also consider dependence of the uncertainty across different states and decision epochs. We also provide a mixed integer linear program formulation for minimizing regret given a set of samples of the transition and reward functions in the uncertain MDP. In addition, we provide two myopic variants of regret, namely Cumulative Expected Myopic Regret (CEMR) and One Step Regret (OSR) that can be optimized in a scalable manner. Specifically, we provide dynamic programming and policy iteration based algorithms to optimize CEMR and OSR respectively. Finally, to demonstrate the effectiveness of our approaches, we provide comparisons on two benchmark problems from literature. We observe that optimizing the myopic variants of regret, OSR and CEMR are better than directly optimizing the regret.
Date issued
2017
URI
https://hdl.handle.net/1721.1/136337
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Journal of Artificial Intelligence Research
Publisher
AI Access Foundation

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.