Show simple item record

dc.contributor.authorDe Sole, Alberto
dc.contributor.authorKac, Victor G
dc.contributor.authorValeri, Daniele
dc.date.accessioned2021-10-27T20:34:58Z
dc.date.available2021-10-27T20:34:58Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/1721.1/136349
dc.description.abstract© 2018, Springer Nature Switzerland AG. For a reductive Lie algebra g, its nilpotent element f and its faithful finite dimensional representation, we construct a Lax operator L(z) with coefficients in the quantum finite W-algebra W(g, f). We show that for the classical linear Lie algebras glN, slN, soN and spN, the operator L(z) satisfies a generalized Yangian identity. The operator L(z) is a quantum finite analogue of the operator of generalized Adler type which we recently introduced in the classical affine setup. As in the latter case, L(z) is obtained as a generalized quasideterminant.
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.relation.isversionof10.1007/S00029-018-0439-6
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleA Lax type operator for quantum finite W-algebras
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalSelecta Mathematica, New Series
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2019-11-14T15:56:55Z
dspace.orderedauthorsDe Sole, A; Kac, VG; Valeri, D
dspace.date.submission2019-11-14T15:56:58Z
mit.journal.volume24
mit.journal.issue5
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record