Show simple item record

dc.contributor.authorSra, Suvrit
dc.date.accessioned2021-11-24T17:29:59Z
dc.date.available2021-10-27T20:35:05Z
dc.date.available2021-11-24T17:29:59Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/136374.2
dc.description.abstract© 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. We prove ‘power’ generalizations of Marcus–Lopes style (including McLeod and Bullen) concavity inequalities for elementary symmetric polynomials, and similar generalizations to convexity inequalities of McLeod and Baston for complete homogeneous symmetric polynomials. We also present additional concavity results for elementary symmetric polynomials, of which the main result is a concavity theorem that yields a well-known log-convexity 1972 result of Muir for positive definite matrices as a corollary.en_US
dc.language.isoen
dc.publisherInforma UK Limiteden_US
dc.relation.isversionof10.1080/03081087.2018.1527891en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleNew concavity and convexity results for symmetric polynomials and their ratiosen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalLinear and Multilinear Algebraen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-04-14T14:41:55Z
dspace.orderedauthorsSra, Sen_US
dspace.date.submission2021-04-14T14:41:55Z
mit.journal.volume68en_US
mit.journal.issue5en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version