MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tunable Metal–Organic Frameworks Enable High-Efficiency Cascaded Adsorption Heat Pumps

Author(s)
Rieth, Adam J; Wright, Ashley M; Rao, Sameer; Kim, Hyunho; LaPotin, Alina D; Wang, Evelyn N; Dincă, Mircea; ... Show more Show less
Thumbnail
DownloadAccepted version (2.396Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2018 American Chemical Society. Rising global standards of living coupled to the recent agreement to eliminate hydrofluorocarbon refrigerants are creating intense pressure to develop more sustainable climate control systems. In this vein, the use of water as the refrigerant in adsorption heat pumps is highly attractive, but such adsorption systems are constrained to large size and poor efficiency by the characteristics of currently employed water sorbents. Here we demonstrate control of the relative humidity of water uptake by modulating the pore size in a family of isoreticular triazolate metal-organic frameworks. Using this method, we identify a pair of materials with stepped, nonoverlapping water isotherms that can function in tandem to provide continuous cooling with a record ideal coefficient of performance of 1.63. Additionally, when used in a single-stage heat pump, the microporous Ni 2 Cl 2 BBTA has the largest working capacity of any material capable of generating a 25 °C difference between ambient and chiller output.
Date issued
2018
URI
https://hdl.handle.net/1721.1/136378
Department
Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of the American Chemical Society
Publisher
American Chemical Society (ACS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.