MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SPATIAL DISTRIBUTION OF CHORIOCAPILLARIS IMPAIRMENT IN EYES WITH CHOROIDAL NEOVASCULARIZATION SECONDARY TO AGE-RELATED MACULAR DEGENERATION: A Quantitative OCT Angiography Study

Author(s)
Moult, Eric M; Alibhai, Agha Yasin; Rebhun, Carl; Lee, ByungKun; Ploner, Stefan; Schottenhamml, Julia; Husvogt, Lennart; Baumal, Caroline R; Witkin, Andre J; Maier, Andreas; Duker, Jay S; Rosenfeld, Phillip J; Waheed, Nadia K; Fujimoto, James G; ... Show more Show less
Thumbnail
DownloadAccepted version (6.426Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
PURPOSE: To develop an optical coherence tomography angiography (OCTA)-based framework for quantitatively analyzing the spatial distribution of choriocapillaris (CC) impairment around choroidal neovascularization (CNV) secondary to age-related macular degeneration. METHODS: In a retrospective, cross-sectional study, 400-kHz swept-source OCTA images from 7 eyes of 6 patients with CNV secondary to age-related macular degeneration were quantitatively analyzed using custom software. A lesion-centered zonal OCTA analysis technique-which portioned the field-of-view into zones relative to CNV boundaries-was developed to quantify the spatial dependence of CC flow deficits. RESULTS: Quantitative, lesion-centered zonal analysis of CC OCTA images revealed highest flow-deficit percentages near CNV boundaries, decreasing in zones farther from the boundaries. Optical coherence tomography angiography using shorter (1.5 ms) interscan times revealed more severe flow deficits than OCTA using longer (3.0 ms) interscan times; however, spatial trends were similar for both interscan times. A detailed description of the OCTA processing steps and parameters was provided so as to elucidate their influence on quantitative measurements. CONCLUSION: Impairment of the CC, assessed by flow-deficit percentages, was most prominent closest to CNV boundaries. The lesion-centered zonal analysis technique enabled quantitative CC measurements relative to focal lesions. Understanding how processing steps, imaging/processing parameters, and artifacts can affect quantitative CC measurements is important for longitudinal, OCTA-based studies of disease progression, and treatment response.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136381
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Retina
Publisher
Ovid Technologies (Wolters Kluwer Health)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.