Show simple item record

dc.contributor.authorPalmer, David
dc.contributor.authorBommes, David
dc.contributor.authorSolomon, Justin
dc.date.accessioned2021-10-27T20:35:08Z
dc.date.available2021-10-27T20:35:08Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/136382
dc.description.abstract© 2020 Owner/Author. Field-guided parameterization methods have proven effective for quad meshing of surfaces; these methods compute smooth cross fields to guide the meshing process and then integrate the fields to construct a discrete mesh. A key challenge in extending these methods to three dimensions, however, is representation of field values. Whereas cross fields can be represented by tangent vector fields that form a linear space, the 3D analog - an octahedral frame field - takes values in a nonlinear manifold. In this work, we describe the space of octahedral frames in the language of differential and algebraic geometry. With this understanding, we develop geometry-aware tools for optimization of octahedral fields, namely geodesic stepping and exact projection via semidefinite relaxation. Our algebraic approach not only provides an elegant and mathematically sound description of the space of octahedral frames but also suggests a generalization to frames whose three axes scale independently, better capturing the singular behavior we expect to see in volumetric frame fields. These new odeco frames, so called as they are represented by orthogonally decomposable tensors, also admit a semidefinite program-based projection operator. Our description of the spaces of octahedral and odeco frames suggests computing frame fields via manifold-based optimization algorithms; we show that these algorithms efficiently produce high-quality fields while maintaining stability and smoothness.
dc.language.isoen
dc.publisherAssociation for Computing Machinery (ACM)
dc.relation.isversionof10.1145/3366786
dc.rightsCreative Commons Attribution 4.0 International license
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceACM
dc.titleAlgebraic Representations for Volumetric Frame Fields
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Center for Computational Science and Engineering
dc.relation.journalACM Transactions on Graphics
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-01-26T17:58:49Z
dspace.orderedauthorsPalmer, D; Bommes, D; Solomon, J
dspace.date.submission2021-01-26T17:58:53Z
mit.journal.volume39
mit.journal.issue2
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record