MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nutrient release from K-feldspar ore altered in hydrothermal conditions

Author(s)
Ciceri, Davide; Allanore, Antoine
Thumbnail
DownloadAccepted version (972.5Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2019, Institute of Chemistry, Slovak Academy of Sciences. The development of potash materials from local K-bearing resources such as aluminosilicate minerals is desirable to overcome reliance on imported fertilizers in tropical countries. However, the nutrient release from such materials follows a time-dependent profile that is not well-understood and that is significantly different if probed at agronomic or geological timescales. This work investigates the nutrient release from a calcium–aluminum–silicate-hydrate (C–A–S–H) material obtained via hydrothermal alteration of K-feldspar ore and CaO. The C–A–S–H hydrothermal material is subjected to sequential leaching cycles with diluted HNO3 (initial pH = 5), renewing the leaching solution at every cycle. X-Ray Powder Diffraction (XRD) is used to monitor changes in the material mineralogy as the leaching progresses, showing a relative increase of calcite (up to 7 wt%) and amorphous phase (up to 23 wt%). Inductively Coupled Plasma Mass Spectrometry (ICP-MS) of the leachates is used to monitor the release of K, Ca, Si and Al, and shows that the material releases K nutrient at every leaching cycle. The pH of the leachates shows that as the content of calcite in the material increases a buffering capacity at pH ≈ 9.6 is developed by the material. The mineralogy, nutrient release, and pH results presented in this study suggest a potential application of the material as a slow release fertilizer when compared to KCl. Experimental results also imply that kinetic parameters rather than solubility are more suited to describe the fertilizer value of silicate materials.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136405
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Chemical Papers
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.